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I. Background 

Vorticity is mathematically defined as the curl of the velocity vector, ષ ൌ	׏ ൈ ࢁ , and is 
physically interpreted as twice the local rotation rate (angular velocity) of a fluid particle ࣓ࢌ, i.e. 
ષ ൌ  It is a flow variable that is fundamental to the basic physics of many areas of fluid . ࢌ2࣓
dynamics, including the field of aerodynamics, turbulent flows, chaotic motion, and many others. 
Even though spatially- and temporally-resolved direct measurement of instantaneous vorticity 
has been a long-held goal, it has proven elusive to date. Currently in all non-intrusive methods, 
whether particle-based such as Laser Doppler Velocimetry (LDV) and Particle Image 
Velocimetry (PIV) [1] or molecular-based as in Molecular Tagging Velocimetry (MTV) [2], 
vorticity is estimated from a number of velocity field measurements at several points near the 
point of interest, which then allow computation of the velocity derivatives over space and 
therefore the curl of the velocity vector. These methods provide a measurement of vorticity that 
is spatially averaged over the (small) spatial resolution area of each method. The first direct 
measurement of vorticity was attempted more than three decades ago by measuring the rotation 
rate of planar mirrors embedded in 25µm transparent spherical beads that were suspended in a 
refractive-index-matched liquid [3]. This method has rarely been utilized since its 
implementation is very complex and the required index matching significantly limits its use and 
prohibits its application in gas (air) flows. In fluid dynamics we do not currently have a way to 
directly measure ષ in a non-intrusive manner with high spatial and temporal resolution, even at a 
single point. 
 
Direct non-intrusive measurement of vorticity requires a laser-based method that is sensitive to 
rotational motion. Translational velocities can be measured with laser Doppler velocimetry 
(LDV) by taking advantage of the (linear) Doppler Effect, which causes a well-understood 
frequency shift that is perceived when objects move towards or away from a source of light. 
Analogously, but much less utilized, the Rotational Doppler Effect (RDE) can be used to 
measure the angular velocity of a rotating object [4-5].  Measuring with RDE requires the use of 
Laguerre-Gaussian (LG) light beams that possess orbital angular momentum (OAM) l , a spatial 
(azimuthal) modulation of the beam phase front. The use of LG laser beams with counter-
rotating OAM (±l) to determine the angular speed of rotating objects based on RDE was recently 
reported by Lavery et al. [6]. When the illumination comprises two helically phased beams of 
opposite values of l, their scattering into a common detection mode gives opposite frequency 
shifts resulting in an intensity modulation of frequency	 ௠݂௢ௗ ൌ  where ߱ is the angular ,ߨ2/߱|݈|2
velocity of the rotating object. With this type of setup Lavery et al. [6] were able to measure the 
angular velocity of a spinning disk. The same concept was later employed to measure the angular 
velocity of a microparticle trapped and spinning in an optical trap [7]. 
 
 
II. Objectives  

We believe it is now possible to achieve the long-held goal of direct vorticity measurement by 
using rotational Doppler to measure the angular velocity of microscopic seed particles, much the 
same way that the familiar linear Doppler Effect is used in laser Doppler velocimetry (LDV) to 
measure the translational velocity of seed particles. In this exploratory effort, our objective is to 
demonstrate the feasibility of direct vorticity measurement in fluid flow at a single point with 
RDE using LG laser beams with counter-rotating OAM. 
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III. Experimental Setup 

These experiments are aimed at vorticity measurements in a fluid flow based on  angular velocity 
measurement of micron sized particles free flowing in the fluid. Very small particles faithfully 
track the fluid flow and, after steady state is reached, they move with the local flow speed and 
rotate with the local angular velocity of the fluid (or half the local flow vorticity at the particle 
center) [8].  We demonstrate the new vorticity measurement technique in the simple flow field of 
solid body rotation where the vorticity field of the flow is well characterized and known 
theoretically. Two sets of experiments are presented. In the first, the signal from a group of 6 μm 
microparticles is integrated to obtain the average fluid rotation rate about the beam optical axis 
within a 100 micron illumination region, and therefore, the spatially-averaged average vorticity 
within that region. In the second experiment,  the same information is obtained by measuring the 
angular velocity of a single 100 μm particle in the flow. 
 

The optical setup is shown in Figure 1(a). A 488 nm continuous wave light from an optically 
pumped semiconductor laser (Genesis MX, Coherent, USA) with initially Gaussian beam profile 
is expanded by a telescope (L1,L2) and reflected off a phase-only two-dimensional liquid crystal 
on silicon spatial light modulator (LCOS-SLM, Hamamatsu, Japan). The SLM is programmed 
with a diffraction pattern shown in Figure 1(b). The reflected light possesses an orbital angular 
momentum with a combination of topological charges ±18 and its far-field intensity profile 
corresponds to a circular periodic structure with 36 petals (Figure 1(c)). The beam is then 
focused with long focal length lens L3 and first diffraction order containing desired spatial mode 
is selected with an aperture. Lens L4 recollimates the beam, which after reflection from dichroic 
mirror (DM) is focused by lens L5 (60mm focal length) into the center of a rotating cylindrical 
container with the beam optical axis aligned along its rotation axis. The beam diameter at the 
focus is measured to be about 120 µm. The container is filled with fluorescent micro-particles 
suspended in a density matched solution of water and glycerin (density about 1.05). Two sets of 
red fluorescent polymer microspheres (Thermo Fisher Scientific Inc.) are used in these 
measurements, one with 6 μm diameter (15% variance) and the other 100 μm diameter (7% 
variance). The use of fluorescent microspheres allows us to reject all scattered signal from the 
rotating surfaces of the container and guarantee the measured signal originates from within the 
rotating body of fluid. The container cap is fitted with a thin quartz window that touches the 
liquid surface at all times to eliminate free surface effects. The angular velocity 	࣓  of the 
container is controlled by a motor (3501 Optical Chopper, New Focus, USA) with an accurately 
known rotation frequency f and, therefore, a well-prescribed container angular velocity ࣓ ൌ
 Measurements were done after the container was spun for a few minutes to ensure a steady .݂ߨ2
state solid body rotation flow field had been established. The resulting flow field is devoid of any 
secondary flow and precisely characterized by the solid-body rotation velocity field ࢁ ൌ 	࢘ ൈ ࣓ 
and its spatially uniform vorticity field	ષ ൌ 2࣓. Special care was taken to align laser beam axis 
with the axis of rotation for the fluid container.  

 
Epi-directional (backward) fluorescent light from the irradiated particles is collected and focused 
onto a PIN photodiode. A small diameter pinhole is set before photodiode in order to spatially 
filter out signal coming outside of focal volume in fluid. Time series of intensity modulated 
signal are recorded at 10 KHz sampling rate and spectrally analyzed.  
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IV. Results & Discussion 

For these measurements the LG laser beam has an OAM with l = ±18, resulting in 36 bright 
features (petals). Therefore, scattering from objects rotating at angular velocity ࣓ (or rotation 
frequency f) leads to intensity modulation at frequency 	 ௠݂௢ௗ ൌ 36 ఠ

ଶగ
ൌ 36	݂. The first set of 

data in Figures 2 and 3 shows the measurement with 6 µm fluorescent particles. In this case, by 
measuring the rotation rate of ensemble of particles within the ൎ 100 µm beam diameter we are 
obtaining the average fluid rotation rate within that region. Figure 2 shows examples of intensity 
modulation of collected (AC-coupled) 
signal for four different prescribed 
rotation frequencies of the cylindrical 
container. Fourier transform of each 
signal was taken to obtain the spectral 
information in Figure 3 using a short 
data record of about 200 ms in length.  
 
From the spectral peaks in Figure 3 we 
measure the modulation frequencies for 
the four cases to be 154.16±5 Hz,  
171.37±5 Hz, 188.58±5 Hz, and 
205.76±5 Hz. These values correspond 
to the measured fluid rotation rates of 
4.28±0.14 Hz, 4.76±0.14 Hz, 5.24±0.14 
Hz, and 5.72±0.14 Hz, respectively. 

Rotating 
cylinder flow 

Figure 1. (a) Experimental setup. L1-L6, lenses; M1-M2, mirrors; DM, dichroic mirror.(b) Diffraction
pattern displayed on 2D White color corresponds to 0 phase shift while black corresponds to 2π phase
shift with 256 steps in between. (c) Resulting beam structure used to illuminate particles in fluid flow. 

Figure 2. 100 ms long time series of collected signal for 
four different rotation frequencies of the cylindrical 
container: f = 4.28 Hz, 4.76 Hz,  5.24 Hz  and 5.71 Hz. 
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These values are in excellent agreement with the prescribed rotation frequencies of the rotating 
fluid container. Accuracy of these measurements is limited by FFT resolution of 5 Hz 
corresponding to the 200 ms data record that was used. Given the steady flow field in this 
experiment, one can improve the measurement accuracy, if desired,  by increasing the length of 
the data record for FFT analysis.   
 
The second set of experiments was carried on with larger 100 µm particles with low particle 
density in solution to ensure single particle measurement within the ൎ 100 µm beam diameter. 
This was confirmed by visually observing the single particle presence in the focal volume of 
structured laser beam based on its intensity time series during data collection. FFT analysis for 
two different prescribed rotation frequencies of the cylindrical container,  f =  4.28 Hz and 4.76 
Hz, is presented in Figure 4. The peaks indicate modulation frequencies of 154.08±5 Hz, and 
170.10±5 Hz for these two cases, where the FFT resolution of 5 Hz is, as before, dictated by the 
data record length ( 200 ms). The corresponding values of the measured fluid rotation rates are 
4.28±0.14 Hz, 4.73±0.14 Hz, which are again in excellent agreement with the imposed rotation 

Figure 3. Power spectrum of signal for collection of 6 µm particles in solution (  200 ms data record). 

Figure 4. Power spectrum of signal for a single 100µm particle in solution for two different rotation 
frequencies of the cylindrical container: f = 4.28 Hz, and 4.76 Hz (  200 ms data record ). 
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frequencies of the rotating fluid container. As indicated before, the FFT resolution and hence the 
rotation rate measurement accuracy can be improved by using a longer data record, which is 
appropriate for this steady flow field where vorticity and fluid rotation rate do not vary in time. 
Figure 5 shows a map of the time evolution of 200ms window FFT for the cylinder rotation 
frequency of f = 4.76 Hz. Only a 25s segment of a longer 40s record is depicted in this figure. 
The steady nature of the flow is confirmed by the time invariant spectral peak in Figure 5 over a 
long period of time, during which the 100 µm particle lingers inside the laser beam at the axis of 
the rotating container while spinning with the fluid rotation rate. Measuring the spectral peak 
based on the 40s data record yields a modulation frequency of 171.5±0.025 Hz, or particle/fluid 
rotation rate of 4.76, in perfect agreement with the imposed rotation frequency of the fluid 
container. 
 
The solid body rotation flow field was selected for these proof-of-concept experiments because it 
is relatively simple to create and has well-characterized velocity and vorticity fields. When the 
liquid-filled cylindrical container initially at rest starts to spin, the fluid layer near the moving 
wall starts to move with the cylinder due to the no-slip viscous boundary condition at the wall. 
The motion is then propagated throughout the container by viscous shear until the entire body of 
liquid rotates at the same speed of the container. The final steady state velocity field is that of 
solid body rotation with vorticity that is constant in time and uniform in space, with axis parallel 
to the axis of rotation of cylinder and magnitude equal to twice the cylinder angular velocity. 
While we have demonstrated here the idea of vorticity measurement using laser beams with 
OAM in a steady flow environment, clearly most exciting applications would be in unsteady 
flows. For micro particles in Stokes flow regime, particle rotation time response can be estimated 

from  ߬ ൌ
ఘ೛	ௗమ

଺଴ఓ
 , where ߩ௣  and ݀  are the particle density and  diameter, and ߤ  is the fluid 

viscosity [9]. For the 100 μm particle in our experiment the  response time is about 100 μsec. 
Therefore, unsteady vorticity measurements are also feasible. Because of the quadratic 
dependence of particle time response on diameter, one can select the appropriate particle size to 
ensure a response time that is faster than the flow fluctuation time scale.  
 

Figure 5. FFT map of signal for a single 100 μm particle in solution over time (f = 4.76 Hz) 
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While the experiments we have reported here represent the extension of the work of Lavery et al. 
[6] to the field of fluid dynamics, there are certain differences between the two as well. In the 
latter, the scattering signal originates from the planar surface of a spinning disk. In ours, 
measurements are carried out within the body of the fluid and the scattering signal is from a 
finite volume inside the fluid. For measurements with high spatial resolution, this scattering 
volume needs to be localized to a small region. In the current experiments, this was achieved by 
focusing the laser beam to about 100 µm diameter inside the liquid container.  

 
V. Summary 

We have demonstrated the first direct and localized non-intrusive measurement of vorticity in a 
fluid flow using the Rotational Doppler Effect (RDE) and Laguerre-Gaussian (LG) light beams 
that possess orbital angular momentum (OAM). The approach has been implemented in the flow 
field of solid body rotation where the flow vorticity is known precisely. In one experiment 
measurements with a group of 6 μm microparticles is used to obtain the average fluid rotation 
rate about the beam optical axis within the 100 micron illumination region, and therefore, the 
spatially-averaged vorticity within. In another experiment, the same information is obtained by 
measuring the angular velocity of a single 100 μm particle in the laser beam. In both experiments 
the measured results are in excellent agreement with those expected from the prescribed rotation 
frequencies of the rotating fluid container. 
 
Although, the technique is demonstrated here in a simple flow where vorticity is uniform and 
steady, the approach holds great promise for unsteady flows with spatially varying vorticity field. 
We plan to explore extensions of this measurement technique to more complex flow 
environments.    
 
 
VII. Publications 

Conference Publications –  

Anton Ryabtsev, Shahram Pouya, Manoochehr Koochesfahani and Marcos Dantus,  
"Characterization of vorticity in fluids by a spatially shaped laser beam,"  Proc. SPIE 9343, Laser 
Resonators, Microresonators, and Beam Control XVII, 93431G (March 3, 2015); 
doi:10.1117/12.2080238; http://dx.doi.org/10.1117/12.2080238  
 
Journal Manuscript in Preparation – 

The following manuscript will be submitted for publication in December 2015. 
“Fluid flow vorticity measurements using laser beams with orbital angular momentum,” by 
Anton Ryabtsev, Shahram Pouya, Alireza Safaripour, Manoochehr Koochesfahani, and Marcos 
Dantus. 
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